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Abstract.
Background: APOE �4 and PICALM are established genes associated with risk of late-onset Alzheimer’s disease (AD).
Previous study indicated interaction of PICALM with APOE �4 in AD patients.
Objective: To explore whether PICALM variation could moderate the influences of APOE �4 on AD pathology biomarkers
and cognition in pre-dementia stage.
Methods: A total of 1,034 non-demented participants (mean age 74 years, 56% females, 40% APOE �4 carriers) were
genotyped for PICALM rs3851179 and APOE �4 at baseline and were followed for influences on changes of cognition and
cerebrospinal fluid (CSF) AD markers in six years. The interaction effects were examined via regression models adjusting
for age, gender, education, and cognitive diagnosis.
Results: The interaction term of rs3851179 × APOE �4 accounted for a significant amount of variance in baseline general
cognition (p = 0.039) and memory function (p = 0.002). The relationships of APOE �4 with trajectory of CSF A�42 (p = 0.007),
CSF P-tau181 (p = 0.003), CSF T-tau (p = 0.001), and memory function (p = 0.017) were also moderated by rs3851179
variation.
Conclusions: APOE �4 carriers experienced slower clinical and pathological progression when they had more protective A
alleles of PICALM rs3851179. These findings firstly revealed the gene-gene interactive effects of PICALM with APOE �4 in
pre-dementia stage.
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INTRODUCTION

Late-onset Alzheimer’s disease (LOAD), the most
common type of dementia, is characterized by cere-
bral abnormal accumulation of amyloid and tau
proteins followed by cognitive deterioration [1]. It has
been proven by the genome-wide association studies
that both the �4 allele of apolipoprotein E (APOE �4)
and phosphatidylinositol binding clathrin assembly
protein (PICALM) single nucleotide polymorphisms
are strongly associated with the risk of LOAD [2, 3].
Moreover, APOE �4 was associated with faster rates
of AD pathology accumulation [4–6] and cognitive
decline among non-demented population [7–11]. In
vitro evidence showed that APOE �4 could disturb the
formation of endosome and endosomal-lysosomal
degradation pathway [12–14]. PICALM is mainly
involved in clathrin-mediated endocytosis, intracel-
lular trafficking, and signaling [3]. We previously
reported that its top signal rs38511179 (allele A)
was associated with a 9% to 29% reduced AD
risk in numbers of ethnicities [15] and associated
with better memory scores among non-demented
population [16]. Rs3851179 is a transcription fac-
tor binding site located in PICALM [15], and its
A allele was associated with up-regulated PICALM
expression [17].

Though APOE �4 and PICALM are two estab-
lished risk genes of AD, it is rarely investigated
whether they could interact for each other to influence
AD occurrence, though there are potential overlap-
ping pathways, such as production and clearance of
amyloid proteins, cholesterol metabolism [18], and
autophagic-endolysosmal network [12, 19]. Experi-
mental studies indicated that increased cellular dose
of PICALM uncouples the presence of APOE �4
from its detrimental effects on endocytosis [20].
Understanding their gene-gene interaction role can
help clarify the genetic underpinning of AD etiology
and also contribute to precise prediction and clas-
sification of genetic high-risk population. Recently,
population-based studies indicated that interaction of
PICALM rs3851179 G allele with APOE �4 can pro-
mote cognitive impairments among AD population
[2, 21, 22]. However, no study has ever explored
their interactive roles in pre-dementia stage. Thus,
the present study aimed to explore whether PICALM
rs3851179 could moderate the relationship of APOE
�4 with cerebrospinal fluid (CSF) AD biomark-
ers and cognitive functions among non-demented
population.

METHODS

Participants

The data used in the present study was acquired
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (http://adniloni.usc.edu), a
multi-site longitudinal study launched in 2003. ADNI
recruited volunteers from multiple centers in North
America. Participants were older adults aged from
55 to 90 years with normal cognition, mild cogni-
tive impairment, or mild AD dementia. The CSF AD
biomarkers and cognitive functions were assessed
simultaneously for each participant at baseline and
repeatedly each year during follow-up. The present
study only focuses on Caucasian with normal cogni-
tion or mild cognitive impairment at enrollment. All
subjects or their proxies had provided written consent
obtained from all participants or authorized repre-
sentatives after extensive description of the ADNI
according to 1975 Declaration of Helsinki.

Genotyping of APOE and PICALM

In ADNI-1, GenomeStudio v2009.1 (Illumina)
was used to process the array data. The ADNI-GO/2
samples were genotyped by the Human OmniEx-
press BeadChip (Illumina Inc., San Diego, CA).
All samples and genotypes underwent stringent
QC with following criteria before association anal-
yses: call rates for individuals > 95%, call rates
for SNPs > 95%, Hardy-Weinberg equilibrium test
p > 0.001, and minor allele frequencies > 0.2. The
ADNI-1 and ADNI-GO/2 datasets consisted of
620,901 and 710,618 genotyped variants respec-
tively, both of which included rs3851179 (PICALM)
and the two loci (rs7412 and rs429358) used to define
the APOE 2/3/4 isoforms [15].

CSF AD biomarker measurements

CSF procedural protocols have been previously
described [23]. CSF was collected by lumbar punc-
ture in 10 ml polypropylene tubes before being sent
to the lab within 2 h. The samples were centrifuged at
2000 g for 10 min. The thaw/freezing cycle was lim-
ited so as not to surpass two times. CSF A�42, T-tau,
and P-tau181 (pg/ml) were measured using the INNO-
BIA AlzBio3 immunoassay (Fujirebio, Belgium).
The within-batch precision values were 5.1–7.8%,
4.4–9.8%, and 5.1–8.8% for A�1–42, T-tau, and P-
tau181 respectively. A�42 levels below 976.6 pg/ml

http://adniloni.usc.edu
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was categorized as A (+). CSF P-tau181 levels above
21.8 pg/ml and CSF T-tau levels above 245 pg/ml
were categorized as T (+) and N (+), respectively.

Cognitive assessments

General cognitive functions were measured by the
85-point Alzheimer’s Disease Assessment Scale 13-
item cognitive subscale (ADAS-cog13, ranging from
0 to 85). ADAS-cog13 scores were transformed into
z-scores to aid in figure presentation. The compos-
ite scores for memory (ADNI MEM) and executive
function (ADNI EF) were calculated using data
from the ADNI neuropsychological battery via item
response theory methods. Item parameters (loadings
and thresholds) from the baseline model were used to
compute scores at each follow-up visit. All compos-
ite scores have been validated previously [24, 25].
A lower ADAS-cog13 score indicates a better cog-
nition, while a higher ADNI MEM and ADNI EF
scores indicate a better memory and executive func-
tion.

Covariate measurement

The covariates include baseline age (continuous
variable), gender (female = 1, male = 0), educa-
tion (continuous variable), cognitive status (mild
cognitive impairment = 1, normal cognition = 0),
and baseline self-reported medical history, includ-
ing insomnia, stroke, depression, cancer, anxiety,
smoking, and body mass index (BMI). BMI is mea-
surement of one’s weight in relation to their weight
(weight (kg) / height2 (m2)).

Statistical analyses

APOE �4 status was dichotomized (“44/34/24” = 1
or �4 (+), “33/22/23” = 0 or �4 (–)) and PICALM
rs3851179 was categorized into three groups (AA = 2,
AG = 1, GG = 0) to better reflect the dose-response
relationship. Participants were accordingly sub
grouped into six groups (APOE �4 (+) / AA, APOE
�4 (+) / AG, APOE �4 (+) / GG, APOE �4 (–) / AA,
APOE �4(–) / AG, and APOE �4(–) / GG).

Before the regression models were run, the nor-
mality of residuals of dependent variables in all
regression models were examined by Kolmogorov-
Smirnov test (p > 0.05) via “nortest” package of
R software. Next, the dependent variables were
normalized via “car” package in case of skewed
distribution. Finally, the model performances were

re-tested using the “performance” package to ensure
that the residuals meet the normality. As for the cross-
sectional analyses, multiple linear regression models
were conducted to examine the interactive effects
of rs3851179 × APOE �4 on cognitive scores and
CSF AD biomarker. Simple slope analyses were per-
formed to interpret the direction of interaction effects.
Linear mixed-effects regression was conducted via
the “lme4” package to test the longitudinal interac-
tion effects. The linear mixed effects models were
employed because they could handle unbalanced and
censored data as well as a continuous variable for time
[26]. Fixed effects included main effects of PICALM
rs3851179, APOE �4 status, years of follow-up
(time-varying variable, “time”), as well as interaction
terms of rs3851179 × APOE �4, time × rs3851179,
time × APOE �4, and time × rs3851179 × APOE �4.
The overall significance of the three-way interaction
term was assessed by the likelihood ratio test com-
paring the full model and a nested model that did not
include the three-way interaction term. p < 0.05 was
considered significant for interaction terms.

All models were calculated adjusting for covariates
including age, gender, education, and cognitive status
(baseline diagnose, mild cognitive impairment = 1,
normal cognition = 0). Subgroup analyses were per-
formed by cognitive status (MCI versus NC) and age
strata (midlife versus late-life) at baseline, because
former studies indicated that APOE-related cognitive
decline varied with age [9, 27]. Sensitivity analyses
were conducted by adding more variables (history of
insomnia, stroke, depression, cancer, anxiety, smok-
ing, and BMI). To preclude the potential influences
of practice effect in the cognition cohort, we also
included the follow-up times (proxy of the times of
cognitive measurements) in the model. The signif-
icance of the findings did not change after adding
these covariates. R software 4.2.1, Jamovi version
2.3.16.0, and Prism Graphpad 9 were applied for sta-
tistical analyses and figure preparation. The ‘nlme’,
‘ggplot2’, ‘car’, ‘nortest’, ‘performance’, ‘spearman’
packages were used in R software.

RESULTS

Population characteristics

A total of 699 non-demented participants (mean
age = 73 years, 55% females, 39% APOE �4 carri-
ers) were included for CSF AD biomarkers analysis
(Table 1), in which 467 participants has at least
one follow-up visit (6 years, average follow-up
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Table 1
Baseline characteristics of participants for CSF biomarker cohort by APOE �4 and PICALM rs3851179

N = 699 Total APOE �4 carrier, N = 274 p APOE �4 non-carrier, N = 425 p
AA AG GG AA AG GG

Number of samples 699 29 (10.6%) 102 (37.2%) 143 (52.2%) 50 (11.8%) 190 (44.7%) 185 (43.5%)
Age, y, mean (SD) 73.2 ± 7.2 72.6 ± 5.3 72.1 ± 8.2 71.9 ± 6.7 0.52 73.6 ± 7.6 74.2 ± 6.9 73.9 ± 7.1 0.94
Female, % 395 (56.5%) 15 (51.7%) 63 (61.8%) 81 (56.6%) 0.56 26 (52.0%) 110 (57.9%) 105 (56.8%) 0.76
Education, y, mean

(SD)
16.1 ± 2.7 15.6 ± 2.5 16.1 ± 2.8 16.2 ± 2.7 0.0003 16.2 ± 2.5 16.1 ± 2.5 16.0 ± 3.0 0.87

MCI, % 471 (67.4%) 22 (75.9%) 77 (75.5%) 118 (82.5%) 0.37 30 (60.0%) 116 (61.1%) 108 (58.4%) 0.87
Depression, % 131 (18.7%) 5 (17.2%) 38 (17.6%) 28 (19.6%) 0.004 10 (20.0%) 91 (47.9%) 32 (17.3%) < 0.0001
Anxiety, % 44 (6.3%) 1 (3.4%) 14 (9.8%) 9 (6.3%) 0.07 2 (4.0%) 28 (14.7%) 8 (4.3%) 0.0008
BMI, kg/m2, mean

(SD)
27.14 ± 4.8 27.1 ± 5.5 27.1 ± 5.0 26.4 ± 4.3 0.0005 27.6 ± 4.3 27.4 ± 5.0 27.3 ± 4.9 0.94

Insomnia, % 55 (7.9%) 7 (24.1%) 13 (12.7%) 35 (24.5%) 0.06 9 (18.0%) 23 (12.1%) 37 (20.0%) 0.11
Stroke, % 22 (3.1%) 1 (3.4%) 3 (3.4%) 0 (0.0%) – 1 (2.0%) 6 (3.2%) 11 (5.9%) 0.29
HTN, % 322 (46.1%) 13 (44.8%) 49 (48.0%) 61 (42.7%) 0.71 24 (48%) 81 (42.6%) 94 (50.1%) 0.28
DM2, % 45 (6.4%) 1 (3.4%) 8 (7.8%) 6 (4.2%) 0.41 2 (4%) 19 (10.0%) 9 (4.9%) 0.10
Cancer, % 120 (17.2%) 5 (17.2%) 38 (19.6%) 19 (13.3%) < 0.0001 6 (12.0%) 82 (43.2%) 32 (17.3%) < 0.0001
Smoking, % 128 (18.3%) 6 (20.7%) 18 (17.6%) 21 (14.7%) 0.67 14 (28.0%) 37 (19.5%) 32 (17.3%) 0.24
CSF A�42, 950.1 744.4 709.1 696.5 0.03 1,275.0 1,180.0 1,243.0 0.53
pg/ml, median

[Q1-Q3]
[649.4–1524.5] [535.0–992.0] [563.1–1047.1] [544.0–921.4] [736.2–1603.2] [822.7–1722.5] [790.5–1788.0]

CSF P-tau181, 22.48 30.1 25.6 27.8 0.001 19.1 19.8 19.9 0.66
pg/ml, median

[Q1-Q3]
[16.7–31.9] [20.2–37.0] [19.9–38.4] [27.1–39.8] [14.9–26.6] [15.2–26.5] [15.8–28.6]

CSF T-tau, pg/ml, 247.2 188.1 267.6 285.1 < 0.0001 236.1 220.7 228.8 0.58
median [Q1-Q3] [188.2–328.2] [312.6–374.6] [216.5–380.5] [228.9–392.2] [165.4–284.7] [174.5–287.7] [177.8–302.8]
A (+), % 364 (52.1%) 21 (72.4%) 76 (74.5%) 111 (77.6%) 0.77 17 (34.0%) 68 (35.8%) 71 (38.4%) 0.76
T/N (+), % 382 (54.6%) 20 (68.9%) 69 (67.6%) 105 (73.4%) 0.60 22 (44.0%) 81 (42.6%) 85 (45.9%) 0.81

MCI, mild cognitive impairment; HTN, hypertension; DM2, type 2 diabetes mellitus; BMI, body mass index; CSF A�42, amyloid-�-protein in cerebrospinal fluid, pg/ml; CSF T-tau, total tau
protein in cerebrospinal fluid, pg/ml; CSF P-tau181, phosphorylated tau protein in cerebrospinal fluid, pg/ml; A(+), A�42 levels below 976.6 pg/ml; TN(+), CSF P-tau181 levels above 21.8 pg/ml
or CSF T-tau levels above 245 pg/ml.
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Fig. 1. Study population flowchart. A total of 2,084 participants were screened. After excluding non-Caucasian (N = 16) and demented
participants (N = 322), participants were divided into two groups for CSF AD biomarker (N = 699) and cognitive cohort (N = 1,034)
respectively.

period = 2.5 years) (Fig. 1). A total of 1,034 non-
demented participants (mean age = 74 years, 56%
females, 40% APOE �4 carriers) were included for
cognition analysis (Table 2), in which 972 partici-
pants has at least one follow-up visit (6 years, average
follow-up period = 3.6 years) (Fig. 1).

rs3851179 allele A moderates the relationships
of APOE �4 with CSF AD biomarkers

The interaction of rs3851179 × APOE �4 was not
significantly associated with levels of CSF A�42
(Fig. 2A), CSF P-tau181 (Fig. 2B), and CSF T-
tau (Fig. 2C) at baseline. Longitudinal analysis via
the likelihood ratio test indicated that the three-
way interaction of time × rs3851179 × APOE �4
accounted for a significant amount variance in CSF
A�42 (χ2 = 7.816, p = 0.007, Fig. 3A), CSF T-tau
(χ2 = 8.56, p = 0.003, Fig. 3B), and CSF Ptau181
(χ2 = 10.61, p = 0.001, Fig. 3C). Rs3851179 A allele
was associated with slower decrease of CSF A�42
and slower elevation of CSF T-tau and CSF Ptau181
among APOE �4 carriers. The above-mentioned
interaction effects remained significant in stratified
analyses by cognitive status (Supplementary Table 2)
and age strata (Supplementary Table 3).

rs3851179 allele A moderates the relationships
of APOE �4 with cognition

For cross-sectional analyses, the interaction of
rs3851179 × APOE �4 accounted for a statistically
significant amount of variance in ADAS-cog13
scores (� = –0.29, p = 0.04, Fig. 2D) and memory
(� = 0.17, p = 0.002, Fig. 2E), but not executive
function (Fig. 2F). The A allele of rs3851179
was associated with lower ADAS-cog13 scores and
higher memory scores only among APOE �4 car-
riers. The likelihood ratio test indicated that the
three-way interaction of time × rs3851179 × APOE
�4 accounted for a statistically significant amount
variance on ADAS-cog13 scores (χ2 = 4.47, p = 0.03,
Fig. 3D) and memory (χ2 = 5.70, p = 0.02, Fig. 3E).
The presence of rs3851179 A allele was associ-
ated with slower memory decline among APOE �4
carriers. No interactive effects were for found for
trajectory of executive function (Fig. 3F).

Subgroup analyses showed that the interaction
effects on memory and ADAS-cog13 scores were sig-
nificant in both NC and MCI groups (Supplementary
Table 2). Interaction effects of rs3851179 × APOE
�4 on baseline ADAS-cog13 scores and memory
remained significant in late-life group, but not in
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Table 2
Baseline characteristics of participants for cognition cohort by APOE �4 and PICALM rs3851179

N = 1,034 Total APOE �4 carrier, N = 427 p non - APOE �4 carrier, N = 607 p
AA AG GG AA AG GG

Number of samples 1,034 45 (10.5%) 173 (40.6%) 209 (48.9%) 79 (13.0%) 274 (45.2%) 254 (41.8%)
Age, y, mean (SD) 73.8 ± 7.0 73.7 ± 5.6 73.7 ± 7.5 72.6 ± 6.6 0.42 74.3 ± 7.0 74.7 ± 7.0 74.3 ± 7.0 0.81
Female, % 449 (43.4%) 23 (51.1%) 100 (57.8%) 120 (57.4%) 0.69 43 (54.5%) 158 (57.7%) 145 (57.1%) 0.88
Education, y, mean (SD) 16.0 ± 2.8 15.5 ± 2.5 15.5 ± 2.8 16.1 ± 2.8 0.44 16.1 ± 2.7 16.0 ± 2.7 16.1 ± 3.0 0.95
MCI, % 679 (65.7%) 22 (48.9%) 129 (74.6%) 165 (78.9%) < 0.01 47 (59.5%) 159 (58.0%) 145 (57.1%) 0.93
Depression, % 200 (19.3%) 7 (15.5%) 37 (21.4%) 44 (21.0%) 0.86 13 (16.5%) 54 (19.7%) 45 (17.7%) 0.74
Anxiety, % 57 (5.5%) 1 (2.2%) 12 (6.9%) 14 (6.7%) 0.49 3 (3.8%) 16 (6.4%) 11 (4.3%) 0.64
BMI, kg/m2, mean (SD) 26.90 ± 4.7 26.48 ± 5.4 26.63 ± 4.7 26.32 ± 4.3 0.80 27.11 ± 4.2 27.20 ± 4.9 27.26 ± 4.6 0.97
Insomnia, % 69 (6.7%) 2 (4.4%) 7 (4.0%) 35 (16.7%) < 0.01 9 (11.4%) 23 (8.4%) 37 (14.6%) 0.08
Stroke, % 36 (3.5%) 2 (4.4%) 9 (5.2%) 0 (0.0%) < 0.01 3 (3.8%) 9 (3.3%) 13 (5.1%) 0.56
Cancer, % 171 (16.5%) 8 (17.8%) 35 (20.2%) 27 (12.9%) 0.15 9 (11.4%) 47 (17.1%) 45 (17.7%) 0.40
HTN, % 479 (46.3%) 23 (51.1%) 81 (46.8%) 94 (44.9%) 0.75 37 (46.8%) 116 (42.3%) 128 (50.3%) 0.18
DM2, % 73 (7.1%) 1 (2.2%) 12 (6.9%) 10 (4.8%) 0.37 3 (3.8%) 24 (8.8%) 23 (9.1%) 0.30
ADAS-cog13 z score, mean (SD) 0 ± 0.99 –0.002 ± 1.01 0.27 ± 0.99 0.35 ± 0.98 0.09 –0.16 ± 0.97 –0.19 ± 0.93 –0.22 ± 0.97 0.86
ADNI MEM z score, mean (SD) 0.44 ± 0.74 0.45 ± 0.74 0.24 ± 0.74 0.18 ± 0.74 0.08 0.52 ± 0.72 0.64 ± 0.69 0.43 ± 0.71 0.27
ADNI EF z score, mean (SD) 0.37 ± 0.88 0.04 ± 0.82 0.26 ± 0.89 0.23 ± 0.80 0.29 0.52 ± 0.89 0.46 ± 0.88 0.47 ± 0.91 0.88

MCI, mild cognitive impairment; HTN, hypertension; DM2, Type2 Diabetes Mellitus; BMI, body mass index; ADAS, Alzheimer’s Disease Assessment Scale; MEM, memory; EF, executive
function.
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Fig. 2. Roles of PICALM rs3851179 in moderating the relationship of APOE �4 with CSF AD biomarker and cognition at baseline. The
interaction of rs3851179 × APOE �4 was not associated with CSF levels of A�42 (A), CSF P-tau181 (B), and CSF T-tau (C). The interaction
of rs3851179 × APOE �4 accounted for a statistically significant amount of variance in ADAS-cog13 scores (D), and memory (E), but not
executive function (F). ADAS, Alzheimer’s Disease Assessment Scale; MEM, memory; EF, executive function; *p < 0.05; Estimate (�), the
amount of change in the dependent variable corresponding to each one-unit change in the independent variable.

Fig. 3. Roles of PICALM rs3851179 in moderating the relationship of APOE �4 with trajectory of CSF AD biomarker and cognitive
functions. The three-way interaction of time × rs3851179 × APOE �4 accounted for a significant amount variance in longitudinal changes
of CSF A�42 (A), CSF T-tau (B), CSF Ptau181 (C), general cognition (D), and memory function (E). No interactive effect was found for
longitudinal changes of executive function (F). ADAS, Alzheimer’s Disease Assessment Scale; MEM, memory; EF, executive function;
*p < 0.05. A “square” symbol was used to represent “APOE �4(+)/AA” group, while a “triangle” symbol was used to highlight the “APOE
�4(+)/GG” group.

mid-life group (Supplementary Table 3). The interac-
tion effects on trajectory of ADAS-cog13 scores was
significant in late-life group, but not mid-life group
(Supplementary Table 3).

DISCUSSION

In the present study, we reported that rs3851179
allele A of PICALM could alleviate the impacts of
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Fig. 4. Potential mechanisms by which PICALM interact with APOE �4 to influence AD pathologies. The red line represents the detrimental
effects of APOE �4. “(+)” means facilitation while “(–)” means inhibition. APOE �4 can lead to more production and less elimination of A�
via endosomal-lysosomal degradation pathway. PICALM rs3851179 allele A was associated with elevated expression of PICALM proteins,
which could play an active role in eliminating A� by promoting endocytosis, autophagy of A� in neurons and gliacytes, and facilitating
extracellular A� protein to cross blood-brain barrier. In addition, PICALM can also eliminate abnormal tau proteins by facilitating autophagy
in neurons.

APOE �4 on CSF levels of AD biomarkers and cog-
nitive functions among non-demented population,
strengthening the potential roles of gene-gene inter-
action in AD occurrence.

The identified interaction of PICALM × APOE
�4 on CSF A� levels could be explained by their
interaction in several common pathways including
autophagy, endocytosis, and endothelial transcytosis,
which are involved in the production and elimina-
tion of A� (Fig. 4). Normally, full-length amyloid
precursor protein on the cell surface is endocy-
tosed into endosomes where it can be cleaved to
produce A� and subsequently released into extra-
cellular matrix and CSF or otherwise eliminated
through autophagy [28, 29]. Specifically, APOE �4
was associated with increased production and ham-
pered elimination of amyloid proteins. First, APOE
�4 can promote cholesterol accumulation in neu-
rons and extracellular environment [14, 30], which
could lead to enhanced volume of endosome and
more production of A� in neurons [20]. Second,
APOE �4 is associated with dysfunctional degrada-
tion process, resulting in less elimination of A� in
neurons [14]. Third, APOE �4 could damage endocy-

tosis in gliacytes and endothelial transcytosis, causing
less removal of extracellular A� across the brain-
blood barrier and more accumulation of A� in brain
matrix [14, 31, 32]. As a potential defender against
AD, PICALM acts in eliminating A� via clathrin-
mediated endocytosis (CME) pathway in neurons and
gliacytes [33, 34]. Also, PICALM is associated with
removal of extracellular A� across the brain-blood
barrier into CSF [33, 35–38], compensating the dys-
function of endothelial transcytosis caused by APOE
�4.

Degradation of excessive abnormal tau protein can
be also disturbed by APOE �4 [19], which pro-
cess might be rescued by PICALM. Abnormal tau
proteins are generally eliminated through ubiquitin-
proteasome system, chaperon-mediated autophagy,
and endosomal micro autophagy in neuron cell [39].
Autophagy can keep pace with the degradation of
tau aggregates under normal condition. However,
impairments of autophagy caused by APOE �4 allele
may lead to overwhelmed accumulation of abnormal
tau proteins in neurons, and then propagate between
neurons, and spread from neurons to microglia, astro-
cytes, and oligodendrocytes [39]. PICALM can to
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some extent eliminate excessive tau proteins by facil-
itating autophagy through CME, compensating the
deficiency in autophagy associated with APOE �4
(Fig. 4).

We also found that rs3851179 A allele could allevi-
ate the impacts of APOE �4 on cognition, especially
for memory function. This can be explained by the
role of PICALM in fighting against neurotransmis-
sion dysfunction caused by APOE �4. Specifically,
normal endocytosis and exocytosis of synaptic vesi-
cle cycle underpinned chemical neurotransmission
between related neurons [40]. APOE �4 leads to
endosomal-lysosomal degradation dysfunction [41],
which can affect the normal functioning of synap-
tic vesicle cycle. Also, APOE �4 is associated with
apoptosis induction and synaptic loss [42], which can
directly lead to cognitive impairment. PICALM can
facilitate neurotransmission by maintaining normal
endocytosis [43] and alleviate the negative effects of
APOE �4 on neurons and cognitive functions..

To the best of our knowledge, we for the first
time reported how interaction of PICALM with APOE
�4 influence AD occurrence in pre-dementia stages
based on population-based study, The interaction of
PICALM with APOE �4 might help predict prognosis
of pathological and clinical outcomes in early stages
of AD continuum and also help recognition and strat-
ification of high-risk population for apoe4 carriers in
clinical settings. In addition, future drug development
experiments could target picalm-related pathways for
early therapy of AD associated with APOE �4.

There are several limitations in the present study.
First, limited sample size and attrition bias due to loss
to follow-up in longitudinal analysis could impact
the stability of the conclusions. Larger and better
designed cohort are expected to validate these find-
ings. Second, these are preliminary findings based
on observational design which cannot equal to causal
relationship. Third, PET and blood biomarkers are
not analyzed due to limited sample size, which could
jeopardize the statistical power especially for uncov-
ering interaction effects. Fourth, the generalizability
of our findings might be constrained because the par-
ticipants were Caucasian volunteers. The interactive
effects should be explored in independent population
of other race or ethnicity.

Conclusions

The present study found that the rs3851179 A allele
of PICALM could alleviate the negative influences
of APOE �4 on AD core biomarkers and cognition

among non-demented population. These findings can
help understand the gene-gene interactive roles in AD
occurrence.
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